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Abstract. The general algebraic propenies of the algebras of vector fields over the quantum 
linear groups G L q ( N )  and SL,(N) are studied. These quantum algebras appear to be quite 
similar to the classical mahix algebra. In particular, the quantum analogues of the characteristic 
polynomial and characteristic identity m obtained for them. The y-analogues of the Newton 
relations connecting two different generating sets of central elements of these algebras (the 
determinant-like and trace-like ones) are derived. This allows one to express the y-determinant 
of quantized vector fields in terms of their y-traces. 

1. Introduction 

Since their discovery, quantum groups have been presented in several closely related but 
not strictly equivalent forms. Having originally been obtained as the quantized universal 
enveloping (QUE) algebras [1,2], they were then reformulated in a matrix form [3]. In 
this latter approach a quantum group is generated by a pair of upper- and lower-triangular 
matrix generators L+ and L- satisfying quadratic permutation relations. A further variation 
of this approach is to combine L+ and L- into a single matrix generator L = S(L-)L+.  
Here S(.) is the usual notation for the antipodal mapping. Following [4] we will call 
the algebra generated by the matrix generator L the reflection equation algebra (REA). 
After suitable treatment this algebra can he related to the quantum group by the (Hopf 
algebra) isomorphism [5,6], although the Hopf structure is implicit in the REA formulation. 
This algebra has found several applications (see [4,7,8,9] and references therein). Let us 
mention only one of them here, namely the construction of the quantum group differential 
calculus, in which the matrix generators L are used as the basic set of (right-)invariant 
vector fields [10-12]. 

A remarkable property of the REA formulation is that the algebra of the L matrices 
turns out to be quite similar in several respects to the classical matrix algebra. In particular, 
both the notions of the matrix trace and the matrix. determinant admit generalization to 
the case of L matrices (see [3,13] and [6,14,15]). In the present paper we intend to 
establish further similarities of the REA to the classical matrix algebra. We restrict ourselves 
to considering the REA of the GL, (N)  and/or S L , ( N )  type only. For these algebras the 
recurrent formulae relating two different centre generating sets, the determinant-like and 
the trace-like ones, are obtained. These formulae are quantum analogues of the classical 
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Newton relations. Furthermore, we define the characteristic polynomial and derive the 
characteristic [dentities (the analogue of the Cayley-Hamilton theorem) for the L-matrices. 
The existence of these identities was first mentioned in [4], where they were presented for 
the case N = 2 (see also [16]). For general N the characteristic identities were obtained 
in [I71 (see remark 4.8 of [17]) when studying the algebraic structure of quantum Yangians 
Y,,(gl(N)). We reproduce this result in the REA approach. Then, by joint use of the quantum 
Newton relations and the characteristic identities one can obtain the expressions for trace- 
like central elements of higher powers. In the QUE representation the similar characteristic 
identities were considered in [IS]. We believe that the REA representation and the use of the 
R-matrix technique makes all considerations and the final formulae much more transparent. 

We conclude this section with a brief mention of some facts from the classical theory 
of matrices (see, e.g., [19]), which will then be generalized to the quantum case. 

Consider the N x N matrix A with complex entries. Its characteristic polynomial is 
defined as 
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N 
A ( x )  = det I I x  1 - A  11 x N  + x ( - l ) k u ( k ) x N - Y .  (1.1) 

k= I 

The eigenvalues (A;), i = 1,. . . , N, of the matrix A are solutions of the characteristic 
equation A(x) = 0. The coefficieng u(i) of the characteristic polynomial expressed in 
terms of hi form the set of basic symmetric polynomials of N variables: 

N 
u(N) = nhi = detA 

i = I  
One can also express u(i) directly in terms of the matrix elements of A. Up to a numerical 
factor each u(i) is given by the sum of all the principal minors of the ith order 

G " . . ~ A I  . . . A; . (1.3) 
1 

1!(N-i)! 
u(i) = , 

Here 6'-,N is the antisymmetric Levi-Civita N-tensor. The compact matrix notations used 
in this formula will be explained later (directly in the quantum case). 

Another standard set of symmetric polynomials is given by the traces of powers of the 
matrix A 

The two basic sets {u(i)) and {s(i)) are connected by the so-called Newton relations 
iu( i )  -s( l )u( i  - I )+  ... + (-1Y-'s(i - I ) U ( I )  + (-1Ys(i) = 0. (1.5) 
In particular, these recurrent relations allow one to express the determinant of the matrix A 
as a polynomial of the traces of its powers. 

Finally, if one substitutes the matrix A in the characteristic polynomial (1.1) instead of 
the scalar variable x then the resulting matrix expression vanishes identically. This is the 
Cayley-Hamilton theorem, and according to it any function of the matrix A can be reduced 
to a polynomial of an order not exceeding N - 1. 
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2. Quantum Newton relations and the characteristic polynomial 

First of all let us introduce some definitions and notation to be used in what follows. The 
REA is defined as the algebra generated by matrix generators L subject to the following 
permutation rules: 

L1 i,, L] i,, = i12 L] i12 LI . (2.1) 
Here the standard notation for matrix spaces (see 131) is used 212 is the GL,(N) R-matrix 
[Z] satisfying the Yang-Baxter equation and the Hecke condition respectively 

where 1 is the unit matrix, and h = q - I/q.  Below we will further compress this notation 
by denoting Rj(j+l) L, since it 
always appears in the first matrix space. 

We will also need the notions of the quantum trace and the q-deformed Levizivita 
tensor. The operation Try of taking the quantum trace of a N x N quantum matrix X looks 
like 

(2.4) 

Rj and omitting the index of the L-matrix, i.e. L1 

Tr,(X) = Tr('DX) 2, = diag[q-N+l, q-N+3,. . . , qN-']. 
The q-deformed Levi-Civita tensor e:-'W (or 6)" in brief notation) is defined, up to a 
factor by its characteristic property 

The normalization is usually fixed by demanding 
square is then equal to 

= 1 for il = 1 , . . . , i,, = N. Its 

2 -  I. . .N61.. .N- N(N-l),QN( k y l  =ey y - - 4  Y "  

where py = (qp  - q-p))/h are usual q-numbers. Note, that both of these definitions are 
closely related to the Hopf smcture of the quantum group and the corresponding comodule 

Two generating sets for the centre of the REA were presented in [3]. One of them is 

s,(i) = ql-N Try L' I < i < N  (2.6) 
where the normalizing factor is chosen for convenience. Another generating set consists of 
the determinant-like elements - E : - ~ L - ,  . . . L-(i+l)L+i, . . . L+,E;.-~. For our purposes 
it is better to express these generators in terms of the L-matrices: 

q,(i) = c u i ~ ~ . - ~ ( ~ l i l  . . . i f - l y e i - N .  
Here the oli are normalizing constants. The first of them is fixed as 

ShUCtUIe Of the REA [3,20]. 

formed by the trace-like elements 

(2.7) 

011 = q'-NNy/leyqlZ 

by the natural condition uy(l) = ~ ~ ( 1 ) .  Others will be specified below. 
The connection between the two basic sets [U,,&)} and {s,,(k)} is provided by quantum 

analogues of the Newton relations (IS). At the classical level they are usually derived by 
using the spectral representations (1.2), (1.4) for a ( k )  and s(k). However, this representation 
is not available in the quantum case. Indeed, the spectrum of the quantum matrix L can be 
constructed only if the centre of the REA is algebraically closed. The latter in turn can be 
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treated only in a particular representation of the REA. To overcome this difficulty we shall 
develop a little bit more technique. 
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Define an operator SN which symmetrizes any N x N matrix X in N matrix spaces: 

S N ( X ) = X I + a 1 X l a ] + " ' + a N  - I . . .  R ] x ] R ,  . . . a _ , .  (2.8) 

(2.9) 

The characteristic properties of this symmetrizer 

[ S N ( x ) ,  ai] = o 1 < i < N - I 
are fulfilled due to relations (2.2), (2.3). Furthermore, the following useful formula: 

is a direct consequence of (2.9) and (2.5). Here. the scalar factor sx reads 
E y S N ( X )  = S , y E y  (2.10) 

l . . . N ~ ~ ( x ) ~ y  = q l - N  Try X . s,y = - 1 
1&12Eq 

For X = L' this factor coincides with sy(i) (2.6). Now we are able to prove 

Proposition. For 1 < i < N the generators U&) and sy(i) are connected by the relations 

i 
Y g .  q i - l  'I (i)-sy(l)uy(i-  ~)+. . .+(- l ) ' - 's , ( i  - l ) u q ( l ) + ( - ~ y s y ( i ) = ~  (2.11) 

provided that the numerical factors ai are fixed as follows: 

(2.12) 

PrmX 
and the definitions of sy(i) and uq(i) one can perform the following transformations: 

Consider the quantities s4(i - p)u4(p)  for 1 < p < i - 1. With the help of (2.10) 

................... 
(i - Uq I 

( N - i + 1 ) 4  @ 

sy(l)uy(i - 1 )  = c Y ~ - I -  E J(LZRI ... Ri_Z)(LRI ... R i - p E y  qi-2 4 

f f i  
fCYi - l  qN-' 

Now the arbi t rq  coefficients up should be fixed in such a way that the last term in 
sy(i - p + l)u& - 1) and the first one in sq(i - p)uq(p)  are equal. This is the case if the 
ap satisfy the telations 
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Then, on taking the alternating sum ~p(- l )p- ' sy( i  -p)uy(p) we find that the only terms 
which survive are the first one in sq(i - l)uq(l) and the last one in s,,(l)uq(i - 1) and, 
thus, we obtain relations (2.11). Finally, given the value of a1 one easily shows that the 
recursion (2.13) is solved by (2.12). 0 

A few remarks are in order here: 

(i) So far we have always been considering the matrices GL,(N). Specializing to 
the SL, (N)  case can be achieved by fixing the quantum determinant of the L-matrix 
(see [6,14,15]): DetL = ql-Nuy(N) = 1. 
(ii) It is worth mentioning that the singular points where the connection between [sy(i)} 
and (uq(i)] breaks down are .the roots of unity: ky = 0 for 1 < k < N .  This is apparently 
related to the fact that the isomorphism of the Hecke algebra of the AN-,  type and the 
group algebra of symmetric group @SN is also destroyed at these points (see, e.g., [Zl]). 

Now let us turn to the derivation of the quantum characteristic identity for the matrix 
L. It can be found in a way quite similar to that of the classical case. Namely, we should 
find a matrix polynomial B of ( N  - 1)th order in L obeying the relation 

( L  -XI) B ( L , x )  E : . . . ~  = A ( x ) .  (2.14) 
Here x is a C-number variable and A(x) is a scalar polynomial of x ,  the characteristic 
polynomial of the L-matrix. The following theorem is a generalization of the Cayley- 
Hamilton theorem to the quantum case. 

Theorem. The matrix polynomial B(L ,  x ) ,  when defined as 

(2.15) 

satisfies the relation (2.14). The characteristic polynomial of the matrix L looks like 

and for the L-matrix the following characteristic identity is satisfied 

(2.16) 

(2.17) 

Proof The relation (2.14) is fulfilled if and only if its left-hand side is totally q-  
antisymmetric, i.e. if it obeys the characteristic relations (2.5) of the q-antisymmetric 
tensor. This in turn is valid if the matrix quantity ( L  - xl) B(L,  x )  commutes with all ki, 
1 < i < N - 1 up to terms proportional to the q-symmetric projectors P+i = (ki + 1/q)/Zy, 
which vanish when being contracted with Now, the key observation is that the 
commutator [ k l ,  ( L  - x ~ ) k ~ ( ~ - ~ x l ) k l l  is proportional to P+ only if fi  = 42. With 
this observation the constrnction of B becomes clear and one immediately checks that B 
chosen as in (2.15) does satisfy the relation (2.14). 

Then, as a direct consequence of (2.14) and (2.15) we get the following expression for 
A(x):  
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This expression can be further simplified with the use of (2.5),(2.1),(2.2) and the q- 
combinatorial relations. The calculations are straightforward but rather lengthy and we 
omit them here, presenting only the result in (2.16). 
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To prove the characteristic identity we shall contract the relation (2.14) with EY+': 
( L  - xl) E $ - ~ + ' B ( L ,  x )  ~ h . ~  = ($.~""c>") A ( x )  . 

The right-hand side of this relation is proportional to the unit matrix and, hence, 
G : , ~ + ~ B E ~ . - ~  is proportional to ( L  - xl)-]. The classical limit of this relation is the 
standard base for proving the Cayley-Hamilton theorem [19]. In the quantum case all 
the considerations are completely the same, and the resulting statement is that the matrix 

9 

polynomial A(L)  vanishes identically. 0 

Here we present few final comments: 

(i) The characteristic identity provides us with the compact expression for the inverse matrix 
of L: 

(ii) Multiplying the characteristic identity by LP, and taking the q-trace we obtain the 
expressions of higher symmetric polynomials s ~ ( N  + p )  in terms of the basic ones u9(i). 
(iii) On passing to concrete REA representations the order of the characteristic identity 
may decrease due to the basic symmetric polynomials u9(i) becoming dependent. This is 
illustrated in the recent paper €221 where the L-matrices were realized as pseudo-differential 
operators acting on the quantum plane and they were found to possess the characteristic 
identity of second order. 
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